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High-Temperature Microwave
Characterization of Dielectric Rods

JOSE C. ARANETA, MEMBER,IEEE, MORRIS E. BRODWIN, SENIOR MEMBER, IEEE,

AND GREGORY A. KRIEGSMANN

Abstract —A techniquefor the simultaneous heating and characteriza-
tion of dielectric rods using a single microwave sonrce is described. The
rod is heated in a rectangular cavity excited by an iris. A variational model

for the impedances of homogeneous rods used in the characterization
procedure is discussed. It is accurate regardless of the diameter of the rod,

even at resonance. Experimental results of ~-Al ~03 are presented.

I. INTRODUCTION

‘T’HE CHARACTERIZATION technique to be de-
scribed is unique in allowing the simultaneous heating

and characterization of a dielectric rod while using a single
microwave generator. An earlier technique utilized two
microwave sources [1].

The inherent speed of microwave heating can result in a
significant amount of energy savings and greater through-
put of heat-treated rods as compared to conventional heat-
ing.

In sirttering ceramic rods, the speed of microwave heat-
ing makes it possible to discriminate against deleterious
slow diffusion processes associated with grain growth [2],
[3].

The technique is particularly suitable for processing
high-technology ceramics such as &AllO~, a solid electro-
lyte used in high-energy density batteries. It can also be
used to sinter and characterize high-permittivit y ceramics
as well as piezoelectric ceramics and ferrites.
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In situ characterization while sintering provides insight
into sintering dynamics without the disadvantages of elec-
trodes.

The applicator used to heat and characterize the rod is a ,
rectangular cavity excited by an ins. The rod is mounted in
the cavity parallel to the electric-field vector. The dielectric
constant and electric conductivity of the rod are deduced
by equating the measured admittance of the cavity with the
inserted rod with the corresponding admittance derived
from the equivalent-circuit representation.

An accurate equivalent circuit representation of the rod
is therefore necessary. Marcuvitz [4] gave a variational
model for the rod which is accurate only when the rod is
very thin compared to the wavelength. It is also invalid
near “resonance.” Nielsen [5] described a numerical tech-
nique which eliminates the limitation on the diameter of
the rod. Although Nielsen’s method shows an improved
representation near resonance, it too suffers a similar de-
ficiency. These models are valid only when the rod is
homogeneous, i.e., the electric conductivity and dielectric
constant are uniform throughout the rod.

An improved variational model is presented in Section
II. It is derived from the same variational formulation
attributed to Schwinger [6] that Marcuvitz used. The im-
proved variational model has no restriction on the rod
diameter and also yields accurate results in the region of
resonance. As compared to the numerical technique of
Nielsen [5], the improved variational model is also easier to
implement and converges more rapidly. The improvement
was realized by using higher order approximations to the
variational solution of Schwinger.

The characterization procedure, Section III, involves the
equating of the measured and theoretical admittances. This

0018-9480/84/1000-1328$01.00 01984 IEEE



ARANETA ef al.: HIGH-TEMPERATURE CHARACTERIZATION OF DIELECTRIC RODS 1329

gives rise to a transcendental equation whose roots yield
the complex dielectric constant. A modified bisection
method [7] is used to determine these roots.

Section IV describes the experimental techniques used to
determine the electric conductivity and dielectric constant
of &A1203 as a function of temperature. The temperature
of the rod is maintained at a desired value by employing a
negative-feedback control scheme.

The electric conductivity of /3-A1203 increased as tem-
perature increased. On the other hand, its dielectric con-
stant decreased as temperature increased. Similar results
have been presented earlier [8].

II. VARIATIONAL MODEL FORHOMOGENEOUSRODS

The accuracy of the characterization procedure is greatly
dependent on the accuracy of the equivalent circuit model
used to represent the rod. A model based on Schwinger’s
variational formulation [6] for the impedances of the
T-equivalent circuit of the rod is used in the characteriza-
tion procedure that will be described, A model cited by
Marcuvitz [4] is actually an approximation to the results
that come after the implementation of Schwinger’s varia-
tional formulation. In any case, the characterization proce-
dure requires a model for a circular rod mounted parallel
to the electric field of the TEIO mode.

Marcuvitz’s approximation is accurate only when the
diameter of the rod is small relative to the wavelength and
when the value of the dielectric constant of the rod is not
near a” resonance” condition of the model.

However, the limitations imposed on the application of
Marcuvitz’s approximation can be removed by an ap-
propriate use of higher order approximations to the varia-
tional solution.

Using Schwinger’s notation, the equivalent circuit for the
rod is shown in Fig. 1, where P denotes the reference plane
on the waveguide passing through the axis of the rod, and
the impedances are normalized by 2..

The expressions for the impedances [6] when an exp (jat)
time dependence is used are

211-212 211-+2

t

Iz
12

p~p
Fig. 1. T-equiv~ent circuit.

stant of the rod, and K: = k 2 – (n r\a)2 is the propagation
constant of the TE.O mode in the waveguide. Note that
K1 = K = 2?r/X ~ where ~ ~ is the wavelength in the wav(e-
guide.

The functions *, and tJO are the even and odd TEIO
mode electric-field intensities, while the functions V. and
rpoare the even and odd solutions of the wave equation

(V2+t;k2)q=0. (4)

The even and odd functional symmetry is about the refer-
ence plane P.

Using the coordinates shown in Fig. 2, the solution to
(4), given in [6] when c:(x, z) is constant, simplifies to

%(~, e) = &A2m@s z~w’m(fm’) (5)

%(r, e) = f %m+1COS(2WI +WLn+l(@~) (6)
~=i)

due to symmetry about the x = a\2 plane when the rod is
at the middle of the waveguide. The dimension of the
broad side of the waveguide is denoted by “a” and the
radius of the rod is “R.” The axis of the rod is the line
(a/2, y,o).

A first approximation to (5) and (6) utilizes only the first
terms. Calling this the 1 x 1 approximation, the expressions
to be used in (1) and (2) are

q,(~,e)=AJo(@kr) (’7)

j(t:–l)k2 = ~~:(x>z)dS-(~;-ljk2~~vo(x,z)G'(x,z,x',z')~O(x',z')dSdS' “
(’2)

Ka(zll – 212) [“ \’

where the integration is over the cross section of
and

the rod
—

Using (7) and (3) in (1) results in [7]

G’(x, zlx’, z’) = – & sin: sin% sin Klz–z’l

+ * ~ L sin& sin &e-lKnIz-z’Jl
~=2 1%1

(3)

211 + 21*= jKa

(+3>=D[”2-(9]-’”

is the real part of the Green’s function for the infinite
rectangular waveguide, and where “k” is the propagation

[

1 pJ1(p)Yo(a)– aJo(p)Y~(a) 1)(9)
* is the complex dielectric con- ‘Z aJo(B)J1(a)– BJ,(B)Jo(~)constant in free-space, Cr
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Fig. 2. Rod coordinates relative to the waveguide,

where a = kR, /32 = C:iY2,and log. C = 0,57721566490.
Using (3) and (8) in (2) with the same location of the rod

axis results in [7]

where

T’(x, zIx’, z’) =G’(x, ZIX’, z’)+@lr -r’l) (11)

is the difference between the real parts of the Green’s
function of the infinite rectangular waveguide and the
free-space Green’s function. The limit of the first term on
the right-hand side is [7]

-+ 5 [q/w-+(:)’l
- (ka) 3,0DD

‘~-+((:)2+(%)210’e(%))’12)
We shall now show that applying the condition a<< 1 to

the 1 X 1 approximation leads to the Marcuvitz equations,
The simplification of &ll(P)Yo(a)– a.Jo(13)l’l(a) in (9)
when a<< 1 gives

‘11+z12=’(~){2,,&[n2-(%~]-1’2-*
+Wa-+r+w
“ [aJo(~)J,(a):@J, (@) Jo(a)] }

(13)

while the same condition applied to &10(/3)Yl(a) –

aJ1( /3)Y0( a) in (10) results in the dropping of the first
term on the right-hand side of (10) and the simplification
of the second. The result is

211 – 212=

The simplification can be carried out because, for most
cases, the value of /3 does not make the second term
smaller than the first. For this situation, the magnitude of
the first term relative to the second is of order a2.

Equations (13) and (14) are the Marcuvitz approxima-
tions. As Marcuvitz stated, “They are within a few percent
error when R/a <0.075 and 0.2< xO/a <0,8.” The sec-
ond restriction is dictated by the fact that (7) and (8) are
only true when the rod is at the middle of the waveguide.
Note that XO denotes the location of the axis of the rod
when it is off centered.

A resonant condition is one that makes one of the
branches of the T-equivalent circuit either zero or infinite.
The values of the parameters at which resonance occurs
depend upon which approximation is being used,

For instance, the value of /3 that makes Zll – Z12 in-
finite satisfies

Jl(a)[aJl(@)Jo( a)–~Jo(fl)Jl(a) ]-~a2Jl(~)=0

(15)

when the Marcuvitz approximation (14) is used while it
satisfies

(16)

when the 1 X 1 approximation (10) is used. The value of ~
at “resonance” is different in the two cases.

When the value of ~ is close to the root of (15), the
Marcuvitz approximation becomes inaccurate. The first
term on the right-hand side of (10) dominates and the 1 x 1
approximation of (9) and (10) should be used. If ~ is close
to the root of (16), the more accurate 2 x 2 approximation
may be used.

The 2x 2 approximation is derived by using the first two
terms of (5) and (6)

?d@)=&JO(~kr)+A2co s26J2(fikr) (17)

qO(r, d) = B1 cos OJl(@krj+ B,cos30J3(fikr). (18)

Using (17) in (1) and (18) in (2) gives [7]

“[C; – COC2( D02+ D20)/D22 + C;Dm /D22

%3 – ( Do2D20/D22 ) 1

(19)

‘~1-Z12=-j(E’-’)k’Ka

“[C: – C1C3( D1~+ DJ1)/Da;+ C:D11/D3J

Dll – ( %3 D31/D33 ) 1

(20)

where the detailed expressions for the Ci’s and Di~’s are
listed in the Appendix,
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TABLE I
SOMSVALUES OF t, THAT SATISFY(25)-(27)

I I I I
a ~. (27) RI. (26) ~. (25)

574 1,469 2,637
0.1

3,042 4,923 7,085

141 368 659

0.2

I I 758 1,231 1,771 I
When

lC~l >1- CoC,(DO, + D,O)/D,, + C~Dw/D,,l (21a)

IDWI >> lDo2D20\D221 (21b)

are satisfied, (19) reduces to the 1 x 1 approximation for
Zll + Zlz, and when

lC~l >1- CIC, (Dl, + D,I)/D,, + C~D1l/D,,l (22a)

1%1 ‘> 1~13~31/~331 (Zzb)

are satisfied, (20) reduces to the 1 X 1 approximation for
211 – 212.

There are four types of resonance: 1) Zll – Z12 is zero,
2) Zll – Zlz is infinite, 3) Zll + Zlz is zero, and 4) Zll +
Z12 is infinite. The corresponding conditions for the 1 x 1
approximation are

Cl=o Dll = .0 (23a,b)

Co=o Dm = O. (24a,b)

Equation (23a) is satisfied when

~Jl(B)Jo(~)– BJo(P)Jl(a)=o (25)

while (24a) is satisfied when

~Jo(6)Jl(~)–8Jl( fl)Jo(a)=o. (26)

Both the 1 x 1 and Marcuvitz approximations will give a
zero value for Zll – Zlz when (25) is satisfied. Both ap-
proximations will give an infinite value for Zll + Z12 when
(26) is satisfied. The 1 X 1 approximation will give a zero
value for Zll + Zlz when Dw is zero and an infinite value
for Zll – Z12 when Dll is zero.

When (23) and (24) are satisfied, the 2X 2 approxima-
tion must be used in place of the 1 X 1 approximation.

Note that the resonance condition for the Marcuvitz
approximation expressed by (15) can be replaced with the
same order of accuracy by

@(B)yo(~)-& lo(B) yl(a)=o. (27)

For a given rod diameter, there is an infinite number of
c; that satisfies (25), (26), and (27). Since c; = ( ~/a)2,
smaller rods have larger values of c? at resonance.

Equations (23) and (24) are useful in choosing rod
diameters which avoid resonances and therefore avoid the
use of the more complicated 2 X 2 approximation.

The first few values of c; that satisfy (25)–(27), when c;
is real, are shown in Table L
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Fig. 3. Magnitude of reflection coefficient as a function of dielectric
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Fig. 4. Equivalent circuit of the rod in an infinite waveguide.

To illustrate the relative accuracy of the 1 x 1 approxi-
mation, let us review the example used by Nielsen [5], He
compared the results of his numerical technique for the
reflection coefficient of the rod with those derived using
the Marcuvitz approximation. Fig. 3 of [5] is reproduced in
Fig. 3 as the dashed and dotted curves. The relevant
parameters are R/a = 0.05 and a = 0.2243. This figure
shows a dip in Ip I in the range 115< t, <120. Marcuvitz’s
result exhibits’ a minimum of Ipl = 0.51 at c,= 120, wlhile
Nielsen’s result shows a minimum of Ipl = 0.45 at c,= 1.15.

The minima in Ipl shown in Fig. 3 occurs in the vicinity
of the value of c, that makes Zll – Z12 infinite. This
“resonant” value of c, satisfies,(15) when the Marcuvitz
approximation is used, and it satisfies ,(16) when the 1 x 1
approximation is used. Note that (16) is the same as the
resonant condition Dll = O expressed by (23b). A value of
t, that satisfies (16) is 108.9.

We shall now determine 1P! using the 1 X 1 and 2X 2
approximations and compare the result with Nielsen’s and
Marcuvitz’s.

The normalized equivalent circuit of the rod in an in-
finite waveguide or a finite waveguide terminated by 20 is
shown in Fig. 4. After finding the equivalent impedance
Ze,, it can be shown that

(21, +212)-(211-2,2)-1

‘p’ = [1-( Z,, +Z,2)][1+(Z,, -Z,2)-1]
. [28)

The 1 x 1 approximation was used to calculate Zll + Zlz
since (21) was satisfied in the range c,< 200. However,
both the 1 x 1 and 2x 2 approximations were used to
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calculate Zll – Z12 [7]. The 2 x 2 approximation was also
used to calculate Zll – Z12, particularly at c,= 108.9, be-
cause the 1 X 1 approximation is resonant there. However,
the results for Zll – Z12 using the 1 x 1 approximation
agree to within four significant figures with the results
derived from the 2x 2 approximation and this is the case
even at t,= 108.9.

Fig. 3 shows the results derived from (28) and the 1 X 1
approximation as a solid curve. The results of the 2 X 2
approximation is a curve that coincides with the solid
curve. This means that the solid curve also represents the
convergent variational solution. It shows a dip in Ip I at
c,= 110.0 and the value of Ip I there is zero, Note that
resonance for the 1 X 1 approximation occurs at c,= 108.9,
and it is not the same value of t, at which minimum Ipl
occurs.

The expression for v that Nielsen used is the same as (7)
and (8) combined. For the example reviewed above, he
utilized ten terms in his calculations, while the 1 X 1 ap-
proximation used only two. Furthermore, the 1 X 1 and the
2 x 2 approximations, to the variational solution for Ipl,

agree. These facts suggest that the variational solution
converges to the exact answer more rapidly than the
Nielsen numerical technique. In addition, they suggest that
the variational solution is computationally more efficient.

The details of then X n approximation to the variational
solution are given in [6], [7].

III. CHARACTERIZATIONPROCEDURE

The equivalent circuit of the rectangular cavity applica-
tor loaded with the rod is shown in Fig. 5. The rod is
represented by its T-equivalent circuit, while the iris and
short circuit are represented by equivalent shunt admit-

tances y, and y,, respectively. The distance between the iris
and the axis of the rod is denoted by 11,while the distance
between the plane of the short circuit and the axis of the
rod is denoted by 12.

The electric conductivity u and the dielectric constant c,
of the rod are determined by equating the equivalent
admittance yC of the circuit shown in Fig. 5 to the mea-
sured admittance y~.

The admittance y~ is measured by using a standing-wave
machine. A convenient reference plane for ym is the plane
of the iris. Hence

S–jtan Kd
Ym=~ – jS tan Kd

(29)

where d is the distance of a standing-wave minimum from
the reference plane and S is the standing-wave ratio.

Before the equivalent admittance of the circuit yCcan be
calculated, the following quantities must be measured: rod
diameter, admittances y, and yi, and the distances 11
and 12.

The values of Zll + Zlz and Zll – Zlz are calculated to
the desired degree of accuracy by using the appropriate
approximation to the variational model,

The equivalent circuit admittance may be expressed as

y~ + j tan Kll
yc=yi+

1 + jyT tan Kll
(30)

ZH-Z12 ZII-+2
0

““~ys
P P

Fig. 5. Equivalent circuit of the cavity and rod.

where
z~~+ z~

‘T= (%1 – %2)(%1+ Z12)+ Z1Z3

(31)

and the equivalent impedance of the short circuit evaluated
at the axis of the rod denoted by z~ is

1 + jy, tanIK1’2
~3 =

y,+ j tan K12 -
(32)

If the distance II is an odd-multiple of a quarter of the
wavelength inside the waveguide, (30) simplifies to

Yc=Yi+Yil. (33)

The only factor in yC that can be treated as a variable
while characterizing the rod is ~. The value of /3 that
makes yC= y~ determines the measured values of u and c,.
Denoting this by& the electric conductivity and dielectric
constant are determined from

(r
p2

()

~r–j—. J?

6X0 a“
(34)

The complex root /30 is found by setting

F(~)= Re(yC–y~)=O (35a)

G(@) -Im(yC–y~)=O. (35b)

The intersection of the two curves defined by (35) on the
complex /3 plane is the complex root &.

We shall now describe the numerical technique used to
find the complex root /3., The function yC– y~ is evaluated
over a radial range of ~. The magnitude of @ is varied but
its phase angle is fixed. The bisection method is used twice;
once to find the roots of G(P). In looking for the roots of
F(p) and secondly to find the roots of F(E), the real part
of the numerical value of yC– y~ is monitored. Similarly,
the imaginary part of the numerical value of yC– y~ is
monitored in looking for the roots of G( /?). If no root of
F( /3) is equal to a root of G(~), the process is repeated at
another phase angle of fl, The change in phase angle is
continued in the direction that eventually makes a root of
F(B) coincident with a root of G(p). When this happens,
the common root is PO.

In general, more than one root will be found for each of
the functions expressed in (35). However, the experimental
results discussed in the next section give a unique value
of /3..

The bisection method can only detect the presence of an
odd number of roots in a given span of I/31. If an even
number of roots exist, the method will not yield even
a single root. However, this shortcoming can be easily
remedied by specifying a shorter search span for I~ 1.
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If c, is positive, (34) suggests that realistic values of /30

are confined to phase-angle ranges between O and – 7/4~

as well as between 37r/4 and r. If negative c, are included,

the feasible ranges expand to the whole second and fourth

quadrants, respectively.

It is found by actual numerical calculation that a given

value of u and Cr corresponds to two values of /30, one in

the feasible range of the second quadrant and the other in

the feasible range of the fourth quadrant. This is because

two values of ~ with the same magnitude and differing in

phase angle by 180° give the same value of u and c,, as can

be seen in (34).

The values of ~ in the first and third quadrants of the

complex ~ plane correspond to a negative electric conduc-

tivity. Whenever roots are found in these quadrants, they

are clearly spurious. Hence, the search for & was limited

to the feasible ranges of the second and’ fourth quadrants.

IV. HIGH-TEMPERATURE RESULTS FOR &A1203

The experimental system used to measure the electric

conductivity u and dielectric constant e, of @-Al ~Oq is

shown in Fig. 6.

An important innovation incorporated into the system is

the simultaneous heating and characterization of the rod

with a single microwave generator. The microwave source

used in the experiments was a Raytheon PGM-1OO. It has a

maximum output of around 800 W and can be varied by

varying the control current of a saturable-core reactor,

which in turn regulates the anode current of the mag-

netron. It operates at 2.45 CiHz.

The circulator diverts the power reflected from the appli-

cator to the calorimeter where it is completely absorbed. In

effect, the microwave generator, circulator, and calorimeter

act as a source of internal impedance ZO. Furthermore, the

impedance presented to the generator is also ZO, The

interaction between the microwave generator and the ap-

plicator is thereby avoided, making it possible for the

generator to maintain constant output power, regardless of

the conditions of the applicator,

The applicator is a rectangular cavity which is used to

measure the u and C, of the rod and also heat it to the

desired temperature [7]. The required amount of power

from the microwave source to maintain a given tempera-

ture is minimized by “tuning” the cavity. This is achieved

by adjusting the short circuit to the correct position and

the iris to the correct size.

An automatic feedback control system is used to main-

tain the temperature of the rod at a desired value. It is

actually the surface temperature of a small portion of the

surface of the rod which is measured by the pyrometer and

maintained constant. An adjustable voltage reference and a

voltage-to-current converter completes the feedback loop
via the control winding of the saturable-core reactor inside

the microwave generator. Surface temperature is main-

tained by an automatic adjustment of the power output of

the microwave generator.

The variation of the dielectric constant and electric

conductivity of the rod with temperature is determined by

repeating the characterization procedure at each tempera-

1333

nCALORIMETER

I

‘---+--ERRHERI
Fig. 6. The ex~erimental system.

10

I ● ’
‘i8e ● ● ● ●

3

$
16
0 /
;3

m 8
n

1--’

1.1 1.3 1.5
i

140- - “c x 103

●
●

120- -
● ●

●
●

●

J

“t
100

-50

8 1 a 1

-70

Fig. 7. Electric conductivity and dielectric constant of &41203 as a
function of temperature..1 x I and ■ Marcuvitz.

ture setting. Measurements of the standing wave are only

made after a sufficiently long waiting period, e.g., 10 rein,

to ensure that steady-state conditions exist.

Consistent with the assumption of the variational model

presented in Section II, only those rods that exhibit a

uniform temperature profile can be characterized accu-

rately. This is because a nonuniform temperature profile

implies a nonuniform value of u and cr. The measured

results do not account for nonuniformities in u and (, and

therefore should be viewed as effective values.

Fig. 7 is a plot of electric conductivity u and dielectric

constant c, as a function of surface temperature of &Al $33,

The results shown in Fig. 7 were taken with the short-cir-

cuit position fixed throughout the experiment and no iris

was used. The short circuit was maintained at Zz= 0,875 ;\g.

These conditions were near the optimum settings for

minimum power output to maintain constant temperature.

In addition, the rods were presintered by microwave

heating, cooled to room temperature, and then char-

acterized at the temperatures shown in the figure,

The diameter of the &Alz03 rod was equivalent to

a = 0,1142. This value of a suggests that the 1 X 1 ap-

proximation is sufficiently accurate. For comparison,

the resulting values of u and C, obtained by using the

Marcuvitz approximation are also shown in Fig. 7. The

results exhibit a dramatic discrepancy between the two

approximations. The Marcuvitz electric conductivity is

around 75 percent lower than those obtained with the 1 x 1



1334 IEEE TRANSACTIONS ON MICROWAVE THEORYANDTECHNIQUES,VOL.MTT-32, NO. 10, OCTOBER 1984

approximation. Moreover, the Marcuvitz dielectric con-

stant is negative, while the dielectric constant obtained

with the 1 X 1 approximation is positive. The values of the

roots Do given by the 1 X 1 approximation were relatively

constant over the temperature range. These roots yield,

however, a near resonance in the Marcuvitz approximation,

i.e., the first term on the right-hand side of (10) is actually

larger than the second. This contradicts the assumption

used in deriving the Marcuvitz approximation.

The 1 x 1 results indicate an increasing conductivity and

a decreasing dielectric constant as temperature increases

from 1000 to 1580°C, A 13-percent change in both the

values of u and c~ occurred between the two temperature

extremes.

The constraints expressed by (21) and (22) were satis-

fied. Therefore, the use of the 2 X 2 approximation was

unnecessary.

The above experiments were done with the rod exposed

to the atmosphere. In addition, the upper half of the rod

was at a slightly higher temperature due to convection

since the rod was vertically oriented.

The characterization procedure was verified by measure-

ments with distilled water at low power.

APPENDIX

The detailed expressions for the C,’s and the D,,’s are

- Qoco=(f; -l)ka

~1= -QI(K/~)

(t; -l)ka

‘2 [1-2La’l“=(t:-l)ka

~,= Q3(K/k)

(+-l) kfx[l-4(~)21

where Q. = &l.(a)Y~_l(/l) – a,l~_l(a)J.(~) for n =

0,1,2,3. The D,j’s are given by

(Dm= –(t; –1)-1(K2Q@’(0,0)

{ [ (k)D22=–(c: –1)-’(v2 Q; 1“(0,0)+ z 217JX(0,0)

‘33=–(6;–1)-la-’ (( )[~2r;,J(o,o) + $uxx(u)

()+~4r;Jzx4 (0,0) 1
-~ Q3[13L(cY)J2(@-~y, (4J3(4 “

D02 = Dzo =
(~!fj2[r’(o)o)+ ($)r;xfo,0~]

“Q’ [rzz(oo)+(+rrD13 = ~31 = (t? -l)a2k2

where

~r’(o, o) = ~lOge(cw)–l

+ ~ (#-w’) -’/’_ l-l

n=3,0DD

()
f r;,z(o, o)s W2

{()
; + ; 2[loge (2W)–2]

+ ~ n-d~-~
~=3,0JX) }

() {()

7
~ r;x(o, o)=w-’ ~– ~ 2[loge(2w)-2]

+ ~ n-n2(n2-w2)-1/2+~
n=3,0DD 1

() (

~ r;,x)x.(o,o) = ~-’ ~ + ~(loge2-2)-#
k4

+ ~ n4(n2_w2J-1/2
n=3,0DD

-n3+ f w2-~
() )

()
~ r;zxx

(

((),()) = W-4 g +g(loge2–2)–#
k4

+ ~ n2~~
?I=3,0DD

nw 2
–n3+ ~+:

}

() {

~ 25 17 7W4f r;,zx4(o, o)=w- —–—w’+=
32 32

()
+2 ; 6(2–log,2)
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