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High-Temperature Microwave
Characterization of Dielectric Rods

JOSE C. ARANETA, MEMBER, 1EEE, MORRIS E. BRODWIN, SENIOR MEMBER, IEEE,
AND GREGORY A. KRIEGSMANN

Abstract —A technique for the simultaneous heating and characteriza-
tion of dielectric rods using a single microwave source is described. The
rod is heated in a rectangular cavity excited by an iris. A variational model
for the impedances of homogeneous rods used in the characterization
procedure is discussed. It is accurate regardless of the diameter of the rod,
even at resonance. Experimental results of B-Al,O; are presented.

I. INTRODUCTION

HE CHARACTERIZATION technique to be de-

scribed is unique in allowing the simultaneous heating
and characterization of a dielectric rod while using a single
microwave generator. An earlier technique utilized two
microwave sources [1].

The inherent speed of microwave heating can result in a
significant amount of energy savings and greater through-
put of heat- treated rods as compared to conventional heat-
ing.

In sintering ceramic rods, the speed of microwave heat-
ing makes it possible to discriminate against deleterious
slow diffusion processes associated with grain growth [2],
(3.

The technique is partlcularly suitable for processmg
high-technology ceramics such as 8-Al,QOs, a solid electro-
Iyte used in high-energy density batteries. It can also be
used to sinter and characterize high-permittivity ceramics
as well as piezoelectric ceramics and ferrites.
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In situ characterization while sintering provides insight
into sintering dynamics without the disadvantages of elec-
trodes.

The applicator used to heat and characterize the rod is a
rectangular cavity excited by an iris. The rod is mounted in
the cavity parallel to the electric-field vector. The dielectric
constant and electric conductivity of the rod are deduced
by equating the measured admittance of the cavity with the
inserted rod with the corresponding admittance derived
from the equivalent-circuit representation.

An accurate equivalent circuit representation of the rod
is therefore necessary. Marcuvitz [4] gave a variational
model for the rod which is accurate only when the rod is
very thin compared to the wavelength. It is also invalid
near “resonance.” Nielsen [5] described a numerical tech-
nique which eliminates the limitation on the diameter of
the rod. Although Nielsen’s method shows an improved
representation near resonance, it too suffers a similar de-
ficiency. These models are valid only when the rod is
homogeneous, i.e., the electric conductivity and dielectric
constant are uniform throughout the rod.

An improved variational model is presented in Section
IL It is derived from the same variational formulation
attributed to Schwinger [6] that Marcuvitz used. The im-
proved variational model has no restriction on the rod
diameter and also yields accurate results in the region of
resonance. As compared to the numerical technique of
Nielsen [5], the improved variational model is also easier to
implement and converges more rapidly. The improvement
was realized by using higher order approximations to the
variational solution of Schwinger.

The characterization procedure, Section III, involves the
equating of the measured and theoretical admittances. This
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gives rise to a transcendental equation whose roots yield
the complex dielectric constant. A modified bisection
method [7] is used to determine these roots.

Section IV describes the experimental techniques used to
determine the electric conductivity and dielectric constant
of B-Al,0; as a function of temperature. The temperature
of the rod is maintained at a desired value by employing a
negative-feedback control scheme.

The electric conductivity of 8-Al,O, increased as tem-
perature increased. On the other hand, its dielectric con-
stant decreased as temperature increased. Similar results
have been presented earlier [8].

II. VARIATIONAL MODEL FOR HOMOGENEOUS RODS

The accuracy of the characterization procedure is greatly
dependent on the accuracy of the equivalent circuit model
used to represent the rod. A model based on Schwinger’s
variational formulation [6] for the impedances of the
T-equivalent circuit of the rod is used in the characteriza-
tion procedure that will be described. A model cited by
Marcuvitz [4] is actually an approximation to the results
that come after the implementation of Schwinger’s varia-
tional formulation. In any case, the characterization proce-
dure requires a model for a circular rod mounted parallel
to the electric field of the TE,; mode.

Marcuvitz’s approximation is accurate only when the
diameter of the rod is small relative to the wavelength and
when the value of the dielectric constant of the rod is not
near a “resonance” condition of the model.

However, the limitations imposed on the application of
Marcuvitz’s approximation can be removed by an ap-
propriate use of higher order approximations to the varia-
tional solution.

Using Schwinger’s notation, the equivalent circuit for the
rod is shown in Fig. 1, where P denotes the reference plane
on the waveguide passing through the axis of the rod, and
the impedances are normalized by Z,.

The expressions for the impedances [6] when an exp (jw?)
time dependence is used are
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Fig. 1. T-equivalent circuit.

stant of the rod, and k2 = k2 —(nm/a)? is the propagation
constant of the TE,, mode in the waveguide. Note that
Kk, =Kk=27/\, where A, is the wavelength in the wave-
guide. ,

The functions ¢, and ¢, are the even and odd TE,,
mode electric-field intensities, while the functions ¢, and
@, are the even and odd solutions of the wave equation

(v Hek)e=0. (4)
The even and odd functional symmetry is about the refer-
ence plane P.

Using the coordinates shown in Fig. 2, the solution to
(4), given in [6] when €*(x, z) is constant, simplifies to

o, (r,0)= i A,,, cos 2m0J2m(\/Ekr) (5)
m=0

[e0]
o,(r.0)= 3 B2’m+lcos(2m+1)0J2m+1(\/—e,:kr) (6)
m=0

due to symmetry about the x = a /2 plane when the rod is
at the middle of the waveguide. The dimension of the
broad side of the waveguide is denoted by “a” and the
radius of the rod is “R.” The axis of the rod is the line
(a/2, y,0). .

A first approximation to (5) and (6) utilizes only the first
terms. Calling this the 1 X1 approximation, the expressions
to be used in (1) and (2) are

9.(r,0) = Ao Jy(Yfet kr)
o,(r,0) =B, cos0J1(\/Ekr).

™M
(3)

(e =1)k? ~ /(pz(x, z)ds —(ex—1)

k[ [o(x, )G (x, 2", ) g, (', ') dSds”

j(le+212) - Ka

-2 [ohx2)as—(er-1)

(1)

(f%tPe d5)2

k2ff<p0(x, 2)G'(x, z|x’, 2’ ) @y (x’, 2”) dSAS’

ka(Zy, — Zy) B

where the integration is over the cross section of the rod
and

1 . ox . wx’ .
G'(x,z|x", 2’) = — g Sin - sin——sink|z - 2’|
(o] ’
+1 > L in 27X gin BT ptene=20) (3)
a = Ik, a

is the real part of the Green’s function for the infinite
rectangular waveguide, and where “k” is the propagation
constant in free-space, € is the complex dielectric con-

)

o]

Using (7) and (3) in (1) results in [7]
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Fig. 2. Rod coordinates relative to the waveguide.

where a= kR, 8% = ¢*a?, and log, C = 0.57721566490.
Using (3) and (8) in (2) with the same location of the rod
axis results in [7]

. (KRz/a) e lzﬂl_
—Jm—a r%l—_)r»r%())(k) dzdz’
o[ B(B) (@)~ ady(B) Yo(a)
+ 8 [aJl('B)JO(a)_:BJo(,B)Jl(a)] (10)
where

D3, 2w, 27) = 6, 213 )+ 3 Yo(Kir = ) (1)

is the difference between the real parts of the Green’s
function of the infinite rectangular waveguide and the
free-space Green’s function. The limit of the first term on
the right-hand side is [7]

. ( 1 )2 3*T’
lim |+
r-0\k/ 329z’
r’'—0

=(k7;)2{3,§m[n_ ”2_(%)2"%(%)2]

7 1(({ka\* (ka\® 2ka
remal(F) e e (B)) @
We shall now show that applying the condition a <1 to
the 1X1 approximation leads to the Marcuvitz equations.

The simplification of BJ;(8)Yy(a)— ay(B)Yi(a) in (9)
when a <1 gives

[ a & ka\*|"? 1
ol Lo
3,0DD

g

+loge(§—;)_2 _(%)2‘+ J(B)

1
. [aJO(B)Jl(a)—le(p)Jo(a)] } (13)

while the same condition applied to BJ,(8)Y;(a)—
aJi(B)Y,(a) in (10) results in the dropping of the first
term on the right-hand side of (10) and the simplification
of the second. The result is

Zy—Zy=
_[{a (2771{)2
Y }rg a

1 (B) 1
Ji(a) [aJ1(ﬁ)Jo(0‘)_:3-70(:3)-’1(“)]

(19)
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The simplification can be carried out because, for most
cases, the value of B does not make the second term
smaller than the first. For this situation, the magnitude of

the first term relative to the second is of order a?.

- Equations (13) and (14) are the Marcuvitz approxima-
tions. As Marcuvitz stated, “They are within a few percent
error when R /a <0.075 and 0.2 <x,/a <0.8.” The sec-
ond restriction is dictated by the fact that (7) and (8) are
only true when the rod is at the middle of the waveguide.
Note that x, denotes the location of the axis of the rod
when it is off centered.

A resonant condition is one that makes one of the
branches of the T-equivalent circuit either zero or infinite.
The values of the parameters at which resonance occurs
depend upon which approximation is being used.

For instance, the value of 8 that makes Z;; — Z;, in-
finite satisfies

R(e)[ah(B)Jo( @)~ Blo(B) Ji(@)] — 3o (8) =0
(15)

when the Marcuvitz approximation (14) is used while it
satisfies

(17T 1] Bh(B)h()-adi(B) () |
rr%l:){r:())(k) 8282’+ 8 [a.fl(ﬁ)Jo(a)—,BJ;(,B)Jf(a) =9
(16)

when the 1 X1 approximation (10) is used. The value of 8
at “resonance” is different in the two cases.

When the value of B is close to the root of (15), the
Marcuvitz approximation becomes inaccurate. The first
term on the right-hand side of (10) dominates and the 1 X1
approximation of (9) and (10) should be used. If B is close
to the root of (16), the more accurate 2 X2 approximation
may be used.

The 2 X2 approximation is derived by using the first two
terms of (5) and (6)

9.(r,0) = doJy (/e kr)+ A,c05260; /e kr) (17)

o,(r,8) = B, cos HJl(\/Ekr)-i- B, cos30J3(\/§kr). (18)
Using (17) in (1) and (18) in (2) gives [7]

1 (er-1)k?
Zn+Zl2~—_] Ka

_[Coz — GG (D + Dyy) /Dy + szDoo/Dzz}

Doo - (DozDzo/Dzz)
(19)
(ex-1)k?

Zy—Zyp=~-j K

. [ C? = C\Cy(Dy3 + Dyy) /Dy + C3Dyy /Dy ]
Dy, —(Dy3 Dy, /Dyy)
(20)

where the detailed expressions for the C;’s and D, ;s are
listed in the Appendix.
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TABLEI
SOME VALUES OF €, THAT SATISFY (25)—(27)
a Eq. (27) | Eq. (26) | Eg. (25)
574 1,469 2,637
0.1
3,042 4,923 7,085
141 368 659
0.2 .
758 1,231 1,771

When
IG5 | = CGCo( Dy, + Dyy) /Doy + C7Dyy /Dyy|  (21a)
| Dool 2 | Doz Dyg / Dy | (21b)

are satisfied, (19) reduces to the 1X1 approximation for
Z,,+ Z,,, and when

(22a)
(22b)

G > |- CG(Dys + Dy,)/Ds3 + C3Dy, /Dy
| D11l > | D13 D31 /D

Zy — 2y
There are four types of resonance: 1) Z,, — Z;, is zero,
2) Z,,— Z,, is infinite, 3) Z,; + Z,, is zero, and 4) Z,; +

Z,, is infinite. The corresponding conditions for the 1X1
approximation are

¢ =0 D, =0 (23a,b)
G =0 Dy, =0. (24a,b)

Equation (23a) is satisfied when
oty (B8)Jp(a)—BJy(B)J(a)=0 (25)

while (24a) is satisfied when
O‘JO(B)J1(“)‘IBJ1(5)J0(“)=0- (26)

Both the 1 X1 and Marcuvitz approximations will give a
zero value for Z,, — Z,, when (25) is satisfied. Both ap-
proximations will give an infinite value for Z;; + Z;, when
(26) is satisfied. The 1X1 approximation will give a zero
value for Z;; + Z,, when Dy, is zero and an infinite value
for Z,; — Z;, when D, is zero.

When (23) and (24) are satisfied, the 2 X2 approxima-
tion must be used in place of the 1 X1 approximation.

Note that the resonance condition for the Marcuvitz
approximation expressed by (15) can be replaced with the
same order of accuracy by

oty (B)Yo(a) = BJo(B)Yy(a) = 0. (27)

For a given rod diameter, there is an infinite number of
€* that satisfies (25), (26), and (27). Since €* = (8/a)?,
smaller rods have larger values of € at resonance.

Equations (23) and (24) are useful in choosing rod
diameters which avoid resonances and therefore avoid the
use of the more complicated 2 X 2 approximation.

The first few values of €* that satisfy (25)-(27), when e*
is real, are shown in Table I

are satisfied, (20) reduces to the 1X1 approx1mauon for
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Fig. 4. Equivalent circuit of the rod in an infinite waveguide.

To illustrate the relative accuracy of the 1X1 approxi-
mation, let us review the example used by Nielsen [5]. He
compared the results of his numerical technique for the
reflection coefficient of the rod with those derived using
the Marcuvitz approximation. Fig. 3 of [5] is reproduced in
Fig. 3 as the dashed and dotted curves. The relevant
parameters are R/a=0.05 and «=0.2243. This figure
shows a dip in |p|in the range 115 < ¢, <120. Marcuvitz’s
result exhibits a minimum of |p|= 0. 51 at €, =120, while
Nielsen’s result shows a minimum of |p| =.0. 45,at €, ~115.

- The minima in |p| shown in Fig. 3 occurs in the vicinity
of the value of €, that makes Z;, — Z,, infinite. This

“resonant” value of ¢, satisfies (15) when the Marcuvitz
approximation is used, and it satisfies (16) when the 1X1
approximation is used. Note that (16) is the same as the
resonant condition D;; = 0 expressed by (23b). A value of
¢, that satisfies (16) is 108.9.

We shall now determine |p| using the 1X1 and 2X2
approximations and compare the result w1th Nielsen’s and
Marcuvitz’s.

The normalized equivalent circuit of the rod in an in-
finite waveguide or a finite waveguide terminated by Z, is
shown in Fig. 4. After finding the equivalent impedance
Z,,, it can be shown that

(Zn+2) (2~ Zy) '
[1 - (Zu + le')] [1 + (Zu - le) bl]

The 1X1 approximation was used to calculate Z,; + Z,,
since (21) was satisfied in the range ¢, < 200. However,
both the 1X1 and 2Xx2 apprommatlons were used to

(28)

lel=
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calculate Z;; — Z;, [7}. The 2X2 approximation was also
used to calculate Z;; — Z,,, particularly at ¢, =108.9, be-
cause the 1 X1 approximation is resonant there. However,
the results for Z;; — Z;, using the 1X1 approximation
agree to within four significant figures with the results
derived from the 2 X2 approximation and this is the case
even at €, =108.9.

Fig. 3 shows the results derived from (28) and the 1X1
approximation as a solid curve. The results of the 2X2
approximation is a curve that coincides with the solid
curve. This means that the solid curve also represents the
convergent variational solution. It shows a dip in |p| at
€,=110.0 and the value of |p| there is zero. Note that
resonance for the 1 X1 approximation occurs at €, =108.9,
and it is not the same value of ¢, at which minimum |p|
occurs.

The expression for ¢ that Nielsen used is the same as (7)
and (8) combined. For the example reviewed above, he
utilized ten terms in his calculations, while the 1X1 ap-
proximation used only two. Furthermore, the 1 X1 and the
2 X2 approximations, to the variational solution for |p|,
agree. These facts suggest that the variational solution
converges to the exact answer more rapidly than the
Nielsen numerical technique. In addition, they suggest that
the variational solution is computationally more efficient.

The details of the n X n approximation to the variational
solution are given in [6], [7].

III. CHARACTERIZATION PROCEDURE

The equivalent circuit of the rectangular cavity applica-
tor loaded with the rod is shown in Fig. 5. The rod is
represented by its T-equivalent circuit, while the iris and
short circuit are represented by equivalent shunt admit-
tances y, and y,, respectively. The distance between the iris
and the axis of the rod is denoted by [, while the distance
between the plane of the short circuit and the axis of the
rod is denoted by /,.

The electric conductivity ¢ and the dielectric constant e,
of the rod are determined by equating the equivalent
admittance y, of the circuit shown in Fig. 5 to the mea-
sured admittance y,,.

The admittance y,, is measured by using a standing-wave
machine. A convenient reference plane for y,, is the plane
of the iris. Hence

_ S—jtankd
Im= 1= jStankd (29)

where d is the distance of a standing-wave minimum from
the reference plane and S is the standing-wave ratio.

Before the equivalent admittance of the circuit y, can be
calculated, the following quantities must be measured: rod
diameter, admittances y, and y;, and the distances /;
and /,.

The values of Z;; + Z,, and Z,; — Z,, are calculated to
the desired degree of accuracy by using the appropriate
approximation to the variational model.

The equivalent circuit admittance may be expressed as

b= yi+ yr+ jtankl;

1T 1+ jyptankl (30)
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Fig. 5. Equivalent circuit of the cavity and rod.

where
yr= (31)
T (Zu=Zp)(Zy+ Z,)+ Zyy 24
and the equivalent impedance of the short circuit evaluated
at the axis of the rod denoted by z; is

_ 1+ jy tankl,

Yy, + jtankl, ° (32)

3
If the distance /; is an odd-multiple of a quarter of the
wavelength inside the waveguide, (30) simplifies to

Ye=y;+yrt. (33)

The only factor in y, that can be treated as a variable

while characterizing the rod is 8. The value of 8 that

makes y, = y,, determines the measured values of o and «,.

Denoting this by 8, the electric conductivity and dielectric
constant are determined from

2
e,—jw‘:0=<%). (34)
The complex root B, is found by setting
F(B)=Re(y.=y,)=0 (352)
G(B)=Im(y, - y,)=0. (35b)

The intersection of the two curves defined by (35) on the
complex § plane is the complex root S,.

We shall now describe the numerical technique used to
find the complex root 8,. The function y, — y,, is evaluated
over a radial range of 8. The magnitude of 8 is varied but
its phase angle is fixed. The bisection method is used twice;
once to find the roots of G(8). In looking for the roots of
F(B) and secondly to find the roots of F(f), the real part
of the numerical value of y,— y,, is monitored. Similarly,
the imaginary part of the numerical value of y,— y,, is
monitored in looking for the roots of G(B). If no root of
F(B) is equal to a root of G(8), the process is repeated at
another phase angle of 8. The change in phase angle is
continued in the direction that eventually makes a root of
F(B) coincident with a root of G(8). When this happens,
the common root is §,.

In general, more than one root will be found for each of
the functions expressed in (35). However, the experimental
results discussed in the next section give a unique value
of B,.

The bisection method can only detect the presence of an
odd number of roots in a given span of |B8] If an even
number of roots exist, the method will not yield even
a single root. However, this shortcoming can be easily
remedied by specifying a shorter search span for |8].
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If €, is positive, (34) suggests that realistic values of 8,
are confined to phase-angle ranges between 0 and — 7/4,
as well as between 37/4 and 7. If negative ¢, are included,
the feasible ranges expand to the whole second and fourth
- quadrants, respectively.

It is found by actual numerical calculation that a given
value of o and ¢, corresponds to two values of 8,, one in
the feasible range of the second quadrant and the other in
‘the feasible range of the fourth quadrant. This is because
two values of 8 with the same magnitude and differing in
phase angle by 180° give the same value of o and ¢,, as can
be seen in (34).

The values of 8 in the first and third quadrants of the

complex B plane correspond to a negative electric conduc- .

tivity. Whenever roots are found in these quadrants, they
are clearly spurious. Hence, the search for B, was limited
to the feasible ranges of the second and fourth quadrants.

IV. HiGH-TEMPERATURE RESULTS FOR $-A1,0,

The experimental system used to measure the electric
conductivity o and dielectric constant €, of B-Al,Q, is
shown in Fig. 6.

An important innovation incorporated into the system is
the simultaneous heating and characterization of the rod

with a single microwave generator. The microwave source .

used in the experiments was a Raytheon PGM-100. It has a
maximum output of around 800 W and can be varied by
varying the control current of a saturable-core reactor,
which in turn regulates the anode current of the mag-
netron. It operates at 2.45 GHz.

The circulator diverts the power reflected from the appli-
cator to the calorimeter where it is completely absorbed. In
effect, the microwave generator, circulator, and calorimeter
act as a source of internal impedance Z,. Furthermore, the
impedance presented to the generator is also Z,. The
interaction between the microwave generator and the ap-
plicator is thereby avoided, making it possible for the
generator to maintain constant output power, regardless of
the conditions of the applicator.

The applicator is a rectangular cavity which is used to
measure the o and ¢, of the rod and also heat it to the
desired temperature [7]. The required amount of power
from the microwave source to maintain a given tempera-
ture is minimized by “tuning” the cavity. This is achieved
by adjusting the short circuit to the correct position and

-the iris to the correct size.

An automatic feedback control system is used to main-
tain the temperature of the rod at a desired value. It is
actually the surface temperature of a small portion of the
surface of the rod which is measured by the pyrometer and
maintained constant. An adjustable voltage reference and a
voltage-to-current converter completes the feedback loop
via the control winding of the saturable-core reactor inside
the microwave generator. Surface temperature is main-
tained by an automatic adjustment of the power output of
the microwave generator.

The variation of the dielectric constant and -electric
conductivity of the rod with temperature is determined by
repeating the characterization procedure at each tempera-
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Fig. 7. Electric conductivity and dielectric constant of B-Al,05 as a
function of temperature. ®|X | and W Marcuvitz.

ture setting. Measurements of the standing wave are only
made after a sufficiently long waiting period, e.g., 10 min,
to ensure that steady-state conditions exist.

Consistent with the assumption of th¢ variational model
presented in Section II, only those rods that exhibit a
uniform temperature profile can be characterized accu-
rately. This is because a nonuniform temperature profile
implies a nonuniform value of o and ¢,. The measured
results do not account for nonuniformities in ¢ and ¢, and
therefore should be viewed as effective values.

Fig. 7 is a plot of electric conductivity ¢ and dielectric
constant ¢, as a function of surface temperature of 8-Al,0;.

The results shown in Fig. 7 were taken with the short-cir-
cuit position fixed throughout the experiment and no iris
was used. The short circuit was maintained at /, = 0. 875A,.
These. conditions were near the optimum settings Eor
minimum power output to maintain constant temperature.

In addition, the rods were presintered by microwave
heating, cooled to room temperature, and then char-
acterized at the temperatures shown in the figure.

The diameter of the B-Al,O; rod was equivalent to
a=0.1142. This value of « suggests that the 1X1 ap-
proximation is sufficiently accurate. For comparison,
the resulting values of ¢ and e, obtained by using the
Marcuvitz approximation are also shown in Fig, 7. The
results exhibit a dramatic discrepancy between the two
approximations. The Marcuvitz electric conductivity is
around 75 percent lower than those obtained with the 1 X1
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approximation. Moreover, the Marcuvitz dielectric con-
stant is negative, while the dielectric constant obtained
with the 1 X1 approximation is positive. The values of the
roots B, given by the 1X1 approximation were relatively
constant over the temperature range. These roots yield,
however, a near resonance in the Marcuvitz approximation,
i.e., the first term on the right-hand side of (10) is actually
larger than the second. This contradicts the assumption
used in deriving the Marcuvitz approximation.

The 1X1 results indicate an increasing conductivity and
a decreasing dielectric constant as temperature increases
from 1000 to 1580°C. A 13-percent change in both the
values of ¢ and ¢, occurred between the two temperature
extremes.

The constraints expressed by (21) and (22) were satis-
fied. Therefore, the use of the 2X2 approximation was
unnecessary.

The above experiments were done with the rod exposed
to the atmosphere. In addition, the upper half of the rod
was at a slightly higher temperature due to convection
since the rod was vertically oriented.

The characterization procedure was verified by measure-
ments with distilled water at low power.

APPENDIX
The detailed expressions for the C,’s and the D, ’s are

S v Il
o= Gl

where Q, = BJ,()J,_1(B)— aJ,_(0)J,(B) for n=
0,1,2,3. The D,;’s are given by
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+ 720l A%, (2)7,(B) - a¥;(a) 5 (A)] )
D, = _(‘;k —1)~1a_2<(%)2rz’,z'(030)
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